E-science

E-Science or eScience is computationally intensive science that is carried out in highly distributed network environments, or science that uses immense data sets that require grid computing; the term sometimes includes technologies that enable distributed collaboration, such as the Access Grid. The term was created by John Taylor, the Director General of the United Kingdom's Office of Science and Technology in 1999 and was used to describe a large funding initiative starting in November 2000. E-science has been more broadly interpreted since then, as "the application of computer technology to the undertaking of modern scientific investigation, including the preparation, experimentation, data collection, results dissemination, and long-term storage and accessibility of all materials generated through the scientific process. These may include data modeling and analysis, electronic/digitized laboratory notebooks, raw and fitted data sets, manuscript production and draft versions, pre-prints, and print and/or electronic publications." In 2014, IEEE eScience Conference Series condensed the definition to "eScience promotes innovation in collaborative, computationally- or data-intensive research across all disciplines, throughout the research lifecycle" in one of the working definitions used by the organizers. E-science encompasses "what is often referred to as big data [which] has revolutionized science... [such as] the Large Hadron Collider (LHC) at CERN... [that] generates around 780 terabytes per year... highly data intensive modern fields of science...that generate large amounts of E-science data include: computational biology, bioinformatics, genomics" and the human digital footprint for the social sciences.
After his appointment as Director General of the Research Councils in 1999 John Taylor, with the support of the Science Minister David Sainsbury and the Chancellor of the Exchequer Gordon Brown, bid to HM Treasury to fund a programme of e-infrastructure development for science which would provide the foundation for UK science and industry to be a world leader in the knowledge economy which motivated the Lisbon Strategy for sustainable economic growth that the UK government committed to in March 2000.
In November 2000 John Taylor announced 98 million for a national UK e-Science programme. An additional 20 million contribution was planned from UK industry in matching funds to projects that they participated in. From this budget of 120 million over three years, 75 million was to be spent on grid application pilots in all areas of science, administered by the Research Council responsible for each area, while 35 million was to be administered by the EPSRC as a Core Programme to develop "industrial strength" Grid middleware. Phase 2 of the programme for 2004-2006 was supported by a further 96 million for application projects, and 27 million for the EPSRC core programme. Phase 3 of the programme for 2007-2009 was supported by a further 14 million for the EPSRC core programme and a further sum for applications. Additional funding for UK e-Science activities was provided from European Union funding, from university funding council SRIF funding for hardware, and from Jisc for networking and other infrastructure.
United States-based initiatives, where the term cyberinfrastructure is typically used to define e-Science projects, are primarily funded by the National Science Foundation office of cyberinfrastructure (NSF OCI) and Department of Energy (in particular the Office of Science).
Traditional science is representative of two distinct philosophical traditions within the history of science, but e-Science, it is being argued, requires a paradigm shift, and the addition of a third branch of the sciences. "The idea of open data is not a new one; indeed, when studying the history and philosophy of science, Robert Boyle is credited with stressing the concepts of skepticism, transparency, and reproducibility for independent verification in scholarly publishing in the 1660s. The scientific method later was divided into two major branches, deductive and empirical approaches. Today, a theoretical revision in the scientific method should include a new branch, Victoria Stodden advocate[s], that of the computational approach, where like the other two methods, all of the computational steps by which scientists draw conclusions are revealed. This is because within the last 20 years, people have been grappling with how to handle changes in high performance computing and simulation."As such, e-science aims at combining both empirical and theoretical traditions, while computer simulations can create artificial data, and real-time big data can be used to calibrate theoretical simulation models. Conceptually, e-Science revolves around developing new methods to support scientists in conducting scientific research with the aim of making new scientific discoveries by analyzing vast amounts of data accessible over the internet using vast amounts of computational resources. However, discoveries of value cannot be made simply by providing computational tools, a cyberinfrastructure or by performing a pre-defined set of steps to produce a result. Rather, there needs to be an original, creative aspect to the activity that by its nature cannot be automated. This has led to various research that attempts to define the properties that e-Science platforms should provide in order to support a new paradigm of doing science, and new rules to fulfill the requirements of preserving and making computational data results available in a manner such that they are reproducible in traceable, logical steps, as an intrinsic requirement for the maintenance of modern scientific integrity that allows an extenuation of "Boyle's tradition in the computational age"